jueves, 24 de noviembre de 2011

Los cúmulos:

Analizando la distribución de estrellas en el espacio se encuemntra que la misma no es uniforme; inclusive a simple vista se puede observar que en ciertas regiones del cielo hay más estrellas que en otras. En promedio, los astrónomos han estimado la presencia de una estrella por cada cubo de 10.000.000.000.000 km (diez billones de km) de lado. Sin embargo, en ciertas regiones del espacio se producen grandes acumulaciones denominadas cúmulos estelares. De acuerdo a su aspecto los cúmulos estelares se han clasificado en dos grupos principales: los globulares y los abiertos.
Los cúmulos globulares deben su nombre a la forma de globo que presentan telescópicamente. Se trata de aglomeraciones de cientos de miles de estrellas, en un volumen bastante reducido: algunas decenas de años luz. Considerando un cubo como el citado anteriormente, en un cúmulo globular se pueden contar hasta 100 estrellas dentro del mismo.
A ojo desnudo, los cúmulos globulares aparentan ser simples estrellas, pero con el telescopio se perciben como débiles manchas. Con un telescopio de mayor potencia se puede comprobar en ese sitio la presencia de un extraordinario número de estrellas. Se considera a los cúmulos globulares entre los cuerpos celestes más antiguos que se conocen. Sus edades son del orden de los 10 mil millones de años, o quizás más.
Por su parte, los cúmulos abiertos, no cuentan co un número tan elevado de estrellas. Generalmente no hay más de 100 estrellas en un cubo, ahora de unos 100.000.000.000.000 km (cien billones de km). Uno de los más conocido es el cúmulo de Pléyades, visible a simple vista en el verano del hemisferio sur como un grupo de 5 o 7 o más estrellas; también se lo conoce como las "siete cabritas". Con un telescopio se pueden ver algo más de 100 estrellas.
No obstante el cúmulo abierto más cercano a nosotros es Híades, también visible a simple vista, pero no tan llamativo como Pléyades; se encuentra a 60.000.000.000.000 km (sesenta billones de km)de distancia. Los cúmulos abiertos presentan un rango de edades bastante grande: algunos son muy jóvenes (unos pocos millones de años) y otro son relativamente viejos (miles de millones de años).
En la siguiente Tabla se dan algunas características comparativas de ambos tipos de cúmulos estelares.

GlobularesAbiertos
Número (1)1251.000
Ubicación (2)Halo y núcleoDisco y brazos espirales
Diámetro (3)20 - 100< 100
Masa (4)104 - 105102 - 103
Componentes (5)104 - 10550 - 103
Color (6)rojorojo o azul
Luminosidad (7)104 - 106102 - 106
Densidad (8)0,5 - 1.0000,1 - 10
EjemplosHérculesHíades, Pléyades




Evolución estelar

En astronomía, se denomina evolución estelar a la secuencia de cambios que una estrella experimenta a lo largo de su existencia.
Durante mucho tiempo se pensó que las estrellas eran enormes bolas de fuego perpetuo. En el siglo XIX aparecen las primeras teorías científicas sobre el origen de su energía: Lord Kelvin y Helmholtz propusieron que las estrellas extraían su energía de la gravedad contrayéndose gradualmente. Pero dicho mecanismo habría permitido mantener la luminosidad del Sol durante únicamente unas decenas de millones de años, lo que no concordaba con la edad de la Tierra medida por los geólogos, que ya entonces se estimaba en varios miles de millones de años. Esa discordancia llevó a la búsqueda de una fuente de energía distinta a la gravedad; en la década de 1920 Sir Arthur Eddington propuso la energía nuclear como alternativa. Hoy en día sabemos que la vida de las estrellas está regida por esos procesos nucleares y que las fases que atraviesan desde su formación hasta su muerte dependen de las tasas de los distintos tipos de reacciones nucleares y de cómo la estrella reacciona ante los cambios que en ellas se producen al variar su temperatura y composición internas. Así pues, la evolución estelar puede describirse como una batalla entre dos fuerzas: la gravitatoria, que desde la formación de una estrella a partir de una nube de gas tiende a comprimirla y a conducirla al colapso gravitatorio, y la nuclear, que tiende a oponerse a esa contracción a través de la presión térmica resultante de las reacciones nucleares. Aunque finalmente el ganador de esta batalla es la gravedad (ya que en algún momento la estrella no tendrá más combustible nuclear que emplear), la evolución de la estrella dependerá, fundamentalmente, de su masa inicial y, en segundo lugar, de su metalicidad y su velocidad de rotación así como de la presencia de estrellas compañeras cercanas.
Una estrella de metalicidad solar, baja velocidad de rotación y sin compañeras cercanas, atraviesa las siguientes fases, conforme a su masa inicial:
Rango de masasFases evolutivasDestino final
Masa baja:M\lesssim0,5 MSolPSP\rightarrowSP\rightarrowSubG\rightarrowGR\rightarrow¿NP?+EB
Masa intermedia:0,5 MSol\lesssimM\lesssim9 MSolPSP\rightarrowSP\rightarrowSubG\rightarrowGR\rightarrowAR/RH\rightarrowRAG\rightarrowNP+EB
Masa elevada:9 MSol\lesssimM\lesssim30 MSolPSP\rightarrowSP\rightarrowSGAz\rightarrowSGAm\rightarrowSGR\rightarrowSN+EN
Masa muy elevada:30 MSol\lesssimMPSP\rightarrowSP\rightarrowSGAz/WR\rightarrowVLA\rightarrowWR\rightarrowSN/BRG+AN

Trayectorias evolutivas de estrellas de distintas masas representadas en undiagrama de Hertzsprung-Russell.
Los nombres de las fases son:
Una estrella puede morir en forma de:
y dejar un remanente estelar:
Las fases y los valores límites de las masas entre los distintos tipos de posibles evoluciones dependen de la metalicidad, de la velocidad de rotación y de la presencia de compañeras. Así, por ejemplo, algunas estrellas de masa baja o intermedia con una compañera cercana, o algunas estrellas muy masivas y de baja metalicidad, pueden acabar su vida destruyéndose por completo sin dejar ningúnremanente estelar.
El estudio de la evolución estelar está condicionado por sus escalas temporales, casi siempre muy superiores a la de una vida humana. Por ello no se puede analizar el ciclo de vida completo de cada estrella individualmente, sino que es necesario realizar observaciones de muchas de ellas, cada una en un punto distinto de su evolución, a modo de instantáneas de ese proceso. En este aspecto es fundamental el estudio de los cúmulos estelares, los que esencialmente son colecciones de estrellas de edad y metalicidad similares pero con un amplio rango de masas. Esos estudios luego se comparan con modelos teóricos y simulaciones numéricas de la estructura estelar.

EL SOL:

Solar prominence from STEREO spacecraft September 29, 2008.jpg
El Sol (del latín solsolis y ésta a su vez de la raíz proto-indoeuropea sauel-)3 es una estrella del tipo espectral G2 que se encuentra en el centro del Sistema Solar, constituyendo la mayor fuente de energía electromagnética de este sistema planetario.4 La Tierra y otros cuerpos (incluyendo a otros planetas, asteroides,meteoroides, cometas y polvo) orbitan alrededor del Sol.4 Por sí solo, representa alrededor del 98,6% de la masa del Sistema Solar. La distancia media del Sol a la Tierra es de aproximadamente 149.600.000 kilómetros, o 92.960.000 millas, y su luz recorre esta distancia en 8 minutos y 30 segundos. La energía del Sol, en forma de luz solar, sustenta a casi todas las formas de vida en la Tierra a través de la fotosíntesis, y determina el clima de la Tierra y la meteorología.
Es la estrella del sistema planetario en el que se encuentra la Tierra; por tanto, es el astro con mayor brillo aparente. Su visibilidad en el cielo local determina, respectivamente, el día y la noche en diferentes regiones de diferentes planetas. En la Tierra, la energía radiada por el Sol es aprovechada por los seres fotosintéticos, que constituyen la base de la cadena trófica, siendo así la principal fuente de energía de la vida. También aporta la energía que mantiene en funcionamiento losprocesos climáticos. El Sol es una estrella que se encuentra en la fase denominada secuencia principal, con un tipo espectral G2, que se formó entre 4.567,90 y 4.570,10 millones de años y permanecerá en la secuencia principal aproximadamente 5000 millones de años más. El Sol, junto con todos los cuerpos celestes que orbitan a su alrededor, incluida la Tierra, forman el Sistema Solar.
A pesar de ser una estrella mediana (aún así, es más brillante que el 85% de las estrellas existentes en nuestra galaxia), es la única cuya forma se puede apreciar a simple vista, con un diámetro angular de 32' 35" de arco en el perihelio y 31' 31" en el afelio, lo que da un diámetro medio de 32' 03". La combinación de tamaños y distancias del Sol y la Luna son tales que se ven, aproximadamente, con el mismo tamaño aparente en el cielo. Esto permite una amplia gama de eclipses solaresdistintos (totales, anulares o parciales).

NACIMIENTO Y MUERTE DEL SOL:
El Sol se formó hace 4.650 millones de años y tiene combustible para 5.500 millones más. Después, comenzará a hacerse más y más grande, hasta convertirse en una gigante roja. Finalmente, se hundirá por su propio peso y se convertirá en una enana blanca, que puede tardar un billón de años en enfriarse. Se formó a partir denubes de gas y polvo que contenían residuos de generaciones anteriores de estrellas. Gracias a la metalicidad de dicho gas, de su disco circumestelar surgieron, más tarde, los planetas, asteroides y cometas del Sistema Solar. En el interior del Sol se producen reacciones de fusión en las que los átomos dehidrógeno se transforman en helio, produciéndose la energía que irradia. Actualmente, el Sol se encuentra en plena secuencia principal, fase en la que seguirá unos 5000 millones de años más quemando hidrógeno de manera estable.
Llegará un día en que el Sol agote todo el hidrógeno en la región central al haberlo transformado en helio. La presión será incapaz de sostener las capas superiores y la región central tenderá a contraerse gravitacionalmente, calentando progresivamente las capas adyacentes. El exceso de energía producida hará que las capas exteriores del Sol tiendan a expandirse y enfriarse y el Sol se convertirá en una estrella gigante roja. El diámetro puede llegar a alcanzar y sobrepasar al de la órbita de la Tierra, con lo cual, cualquier forma de vida se habrá extinguido. Cuando la temperatura de la región central alcance aproximadamente 100 millones de kelvins, comenzará a producirse la fusión del helio en carbono mientras alrededor del núcleo se sigue fusionando hidrógeno en helio. Ello producirá que la estrella se contraiga y disminuya su brillo a la vez que aumenta su temperatura, convirtiéndose el Sol en una estrella de la rama horizontal. Al agotarse el helio del núcleo, se iniciará una nueva expansión del Sol y el helio empezará también a fusionarse en una nueva capa alrededor del núcleo inerte -compuesto de carbono y oxígeno y que por no tener masa suficiente el Sol no alcanzará las presiones y temperaturas suficientes para fusionar dichos elementos en elementos más pesados- que lo convertirá de nuevo en una gigante roja, pero ésta vez de la rama asintótica gigante y provocará que el astro expulse gran parte de su masa en la forma de una nebulosa planetaria, quedando únicamente el núcleo solar que se transformará en una enana blanca y, mucho más tarde, al enfriarse totalmente, en una enana negra. El Sol no llegará a estallar como una supernova al no tener la masa suficiente para ello.
Si bien se creía en un principio que el Sol acabaría por absorber además de Mercurio y Venus a la Tierra al convertirse en gigante roja, la gran pérdida de masa que sufrirá en el proceso hizo pensar por un tiempo que la órbita terrestre -al igual que la de los demás planetas del Sistema Solar- se expandiría posiblemente salvándola de ese destino.5 Sin embargo, un artículo reciente postula que ello no ocurrirá y que las interacciones mareales así como el roce con la materia de la cromosfera solar harán que nuestro planeta sea absorbido.6 Otro artículo posterior también apunta en la misma dirección.



Composición estelar:


La composición química de una estrella varía según la generación a la que pertenezca. Cuanto más antigua sea más baja será su metalicidad. Al inicio de su vida una estrella similar al Sol contiene aproximadamente 75% de hidrógeno y 23% de helio. El 2% restante lo forman elementos más pesados, aportados por estrellas que finalizaron su ciclo antes que ella. Estos porcentajes son en masa; en número de núcleos, la relación es 90% de hidrógeno y 10% de helio.
En la Vía Láctea las estrellas se clasifican según su riqueza en metales en dos grandes grupos. Las que tienen una cierta abundancia se denominan de la población I, mientras que las estrellas pobres en metales forman parte de la población II. Normalmente la metalicidad va directamente relacionada con la edad de la estrella. A más elementos pesados más joven es la estrella.
La composición de una estrella evoluciona a lo largo de su ciclo, aumentando su contenido en elementos pesados en detrimento del hidrógeno, sobre todo. Sin embargo, las estrellas sólo queman un 10% de su masa inicial, por lo que globalmente su metalicidad no aumenta mucho. Además, las reacciones nucleares sólo se dan en las regiones centrales de la estrella. Este es el motivo por el que cuando se analiza el espectro de una estrella lo que se observa es, en la mayoría de los casos, la composición que tenía cuando se formó. En algunas estrellas poco masivas los movimientos de convección penetran mucho en el interior, llegando a mezclar material procesado con el original. Entonces se puede observar incluso en la superficie parte de ese material procesado. La estrella presenta, en esos casos, una composición superficial con más metales.

ESTRUCTURA ESTELAR:


El modelo más simple de estructura estelar es la aproximación cuasiestática de simetría esférica. El modelo asume que la estrella se halla muy cerca de una situación de equilibrio hidrostático en el que apenas hay movimientos verticales netos y, a su vez, también se considera que la forma del astro posee simetría esférica. Todo esto es en esencia cierto para el grueso de las estrellas observables.
Todas las estrellas que se mantienen activas poseen un núcleo en el cual realizan las reacciones de fusión nuclear y un manto a través del cual el calor y la radiación son transportados mediante procesos de radiación y convección. Finalmente está la capa más superficial de las estrellas, su atmósfera. En ella se producen los fenómenos visibles tales como protuberancias solares,eyecciones de masa coronal, manchas solares, etc. Todas estas capas cambiarán de tamaño e incluso su disposición a lo largo del ciclo evolutivo de la estrella.

Estrella

En un sentido general, puede afirmarse que una estrella es todo objeto astronómicoque brilla con luz propia. Adecuadamente, de un modo más técnico y preciso, podría decirse que se trata de una esfera de plasma, que mantiene su forma gracias a un equilibrio de fuerzas denominado equilibrio hidrostático. El equilibrio se produce esencialmente entre la fuerza de gravedad, que empuja la materia hacia el centro de la estrella, y la presión que hace el plasma hacia fuera, que tal como sucede en ungas, tiende a expandirlo. La presión hacia fuera depende de la temperatura, que en un caso típico como el Sol, se mantiene con el suministro de energía producida en el interior de la  estrella.
La energía que disipan en el espacio estas esferas de gas, son en forma de radiación electromagnética, neutrinos y viento estelar; y nos permiten observar la apariencia de las estrellas en el cielo nocturno como puntos luminosos y, en la gran mayoría de los casos, titilantes.

Debido a la gran distancia que suelen recorrer las radiaciones estelares, estas llegan débiles a nuestro planeta, siendo susceptibles, en la gran mayoría de los casos, a las distorsiones ópticas producidas por la turbulencia y las diferencias de densidad de la atmósfera terrestre(seeing). El Sol, al estar tan cerca, se observa no como un punto sino como un disco luminoso cuya presencia o ausencia en el cielo terrestre provoca el día o la noche respectivamente.

CICLO DE VIDA:

Mientras las interacciones se producen en el núcleo, éstas sostienen el equilibrio hidrostático del cuerpo y la estrella mantiene su apariencia iridiscente predicha por Niels Bohr en la teoría de las órbitas cuantificadas. Cuando parte de esas interacciones (la parte de la fusión de materia) se prolonga en el tiempo, los átomos de sus partes más externas comienzan a fusionarse. Esta región externa, al no estar comprimida al mismo nivel que el núcleo, aumenta su diámetro. Llegado cierto momento, dicho proceso se paraliza, para contraerse nuevamente hasta el estado en el que los procesos de fusión más externos vuelven a comenzar y nuevamente se produce un aumento del diámetro. Estas interacciones producen índices de iridiscencia mucho menores, por lo que la apariencia suele ser rojiza. En esta etapa el cuerpo entra en la fase de colapso, en la cual las fuerzas en pugna —la gravedad y las interacciones de fusión de las capas externas— producen una constante variación del diámetro, en la que acaban venciendo las fuerzas gravitatorias cuando las capas más externas no tienen ya elementos que fusionar.

Se puede decir que dicho proceso de colapso finaliza en el momento en que la estrella no produce fusiones de material, y dependiendo de su masa total, la fusión entrará en un proceso degenerativo al colapsar por vencer a las fuerzas descritas en el principio de exclusión de Pauli, produciéndose una supernova.

FORMACIÓN Y EVOLUCIÓN:
Las estrellas se forman en las regiones más densas de las nubes moleculares como consecuencia de las inestabilidades gravitatorias causadas, principalmente, por supernovas o colisiones galácticas. El proceso se acelera una vez que estas nubes de hidrógeno molecular (H2) empiezan a caer sobre sí mismas, alimentado por la cada vez más intensa atracción gravitatoria. Su densidad aumenta progresivamente, siendo más rápido el proceso en el centro que en la periferia. No tarda mucho en formarse un núcleo en contracción muy caliente llamado protoestrella. El colapso en este núcleo es, finalmente, detenido cuando comienzan las reacciones nucleares que elevan la presión y temperatura de la protoestrella. Una vez estabilizada la fusión del hidrógeno, se considera que la estrella está en la llamadasecuencia principal, fase que ocupa aproximadamente un 90% de su vida. Cuando se agota el hidrógeno del núcleo de la estrella, su evolución dependerá de la masa (detalles en evolución estelar) y puede convertirse en una enana blanca o explotar como supernova, dejando también un remanente estelar que puede ser una estrella de neutrones o un agujero negro. Así pues, la vida de una estrella se caracteriza por largas fases de estabilidad regidas por la escala de tiempo nuclear separadas por breves etapas de transición dominadas por la escala de tiempo dinámico (véase Escalas de tiempo estelar).
Muchas estrellas, el Sol entre ellas, tienen aproximadamente simetría esférica por tener velocidades de rotación bajas. Otras estrellas, sin embargo, giran a gran velocidad y su radio ecuatorial es significativamente mayor que su radio polar. Una velocidad de rotación alta también genera diferencias de temperatura superficial entre el ecuador y los polos. Como ejemplo, la velocidad de rotación en el ecuador de Vega es de 275 km/s, lo que hace que los polos estén a una temperatura de 10 150 K y el ecuador a una temperatura de 7 900 K.3
La mayoría de las estrellas pierden masa a una velocidad muy baja. En el Sistema Solar unos 1020 gramos de materia estelar son expulsados por el viento solar cada año. Sin embargo, en las últimas fases de sus vidas, las estrellas pierden masa de forma mucho más intensa y pueden acabar con una masa final muy inferior a la original. Para las estrellas más masivas este efecto es importante desde el principio. Así, una estrella con 120 masas solares iniciales y metalicidad igual a la del Sol acabará expulsando en forma de viento estelarmás del 90% de su masa para acabar su vida con menos de 10 masas solares.4 Finalmente, al morir la estrella se produce en la mayoría de los casos una nebulosa planetaria, una supernova o una hipernova por la cual se expulsa aún más materia al espacio interestelar. La materia expulsada incluye elementos pesados producidos en la estrella que más tarde formarán nuevas estrellas y planetas, aumentando así lametalicidad del Universo.